
1.
2.

3.
4.

Instant OpenHIE
Exchanging health information is difficult. Security and privacy are paramount. There are many potential components and use cases. Many implementers
need or start with HIEs for one project or a narrow national use case, then face the challenge of scaling up and out into new areas.

The Instant OpenHIE project aims to reduce the costs and skills required for software developers to deploy an OpenHIE architecture for quicker initial
solution testing and as a starting point for faster production implementation and customization. Instant OpenHIE will be a simple way for technical persons
to install and see a complex system working against a real-world use case. It will allow technical persons to illustrate how interoperability can work to solve
health challenges and show how a national interoperability architecture could be created with open-source software and standards.

Partnerships especially with regard to security, privacy, and standards-testing are critical, including future coordination with IHE and other entities to
ensure alignment and to follow best practices of the leading institutions and prevent duplication.

Vision

At maturity, Instant OpenHIE activities will provide portable, launchable versions of multiple OpenHIE components to facilitate:

Demonstrable reference products -- those that align with the OpenHIE Community's vision for low resource contexts
Rapid software development of mediators and point-of-service systems by making it possible to launch several applications easily so the
developer can focus on their task
Reproducible, version-controlled infrastructure for user-contributed tests of the OpenHIE Architecture profiles, workflows, and use cases.
Production-ready containers and orchestratable components that are deployable in any context.

The first phase of activities addresses items 1-2 while production-ready deployments and infrastructure for testing will be built incrementally upon the
innovations and lessons learnt from the efforts of the earlier phase.

Deploying and managing private health information on patients and providers is among the most sensitive of any data. It is critical to ensure security and
privacy, backups and data recovery, authentication, authorization and other enterprise standards. At maturity, Instant OpenHIE would provide production-
ready containers and some orchestration assets, such as Kubernetes manifests, but these would be borrowed from Instant OpenHIE and still managed by
implementers, who are responsible for databases, upgrades, privacy, security, backups and recovery, authentication, authorization, and other production-
ready concerns. Instant OpenHIE would be a way for implementers to develop their tooling around the OpenHIE Architecture and the versions of it, rather
than as a substitute for enterprise HIS implementation, support and management.

Roadmap

At maturity, Instant OpenHIE activities will provide portable, launchable versions of multiple OpenHIE components to facilitate:

Demonstrable reference products -- those that align with the OpenHIE Community's vision for low resource contexts
Rapid software development of mediators and point-of-service systems by making it possible to launch several applications easily so the
developer can focus on their task
Reproducible, version-controlled infrastructure for user-contributed tests of the OpenHIE Architecture profiles, workflows, and use cases.
Production-ready containers and orchestratable components that are deployable in any context.

The first phase of activities addresses items 1-2 with a focus on a particular use case and set of packages, while production-ready deployments and
infrastructure for testing will be built incrementally upon the innovations and lessons learnt from the efforts of the earlier phase.

The first phase focuses on:

Consultations with the relevant communities on profiles, use cases, and workflows, including with the OpenHIE Architecture Community and
DevOps Community.
Capturing the community feedback into an Instant OpenHIE Technical Design document for sharing. The Technical Design document is the entry
point for understanding how to get started and make use of the stack as well as contribute to it and its future.
The initial efforts at creating a core prototypical health information exchange using open standards and open source software to help developers
add interoperability to your own products.

Two packages will be produced in the first phase, the and the that extends from core and core package health workforce package
adds health workforce related functions and metadata.

Phase 1 Roadmap

Illustrative Roadmap for Future Use Cases

Documentation and Architecture

For more information about Instant OpenHIE see the .user documentation

For an depth description of the architecture see to following links:

For documentation and architecture relating to the first phase see the .Instant OpenHIE Technical Architecture
For the generic architecture of Instant OpenHIE see the .architecture section of the user documentation

Contributing
Instant OpenHIE is designed to be extensible. There are two broad areas of contribution to the Instant OpenHIE stack:

Contributing new components/apps to new and existing packages,
Contributing new sets of workflows, use cases and tests to new and existing packages.

When contributing new components/apps, the following artefacts are expected to be produced to support this:

App
owner
responsi
bilities

Description

Tagged
releases

Releases should be tagged in git or other version control system and in a public repository.

Environm
ent
variables

Configurations must be stored in or be able to be overridden by environment variables. See the Twelve Factor App: https://12factor.net
/config

Dockerfile Create a publicly available Dockerfile used to build the image and a link to it.

https://openhie.github.io/instant/
https://docs.google.com/document/d/1a-TP20OjKvwn3mMu8U8sncvbvO9ellnQOoNrjZ6u2Fc/
https://openhie.github.io/instant/docs/more-info/architecture/
https://12factor.net/config
https://12factor.net/config

Container
image

Make available a link to a public image of the application. A tagged release image should be available.

Docker
Compose

Provide a link to a versioned Docker Compose script. A Docker Compose file should exist for running the application stack, including
databases or web servers or other needs. Where possible use existing containers for things like databases or web servers. Slim images (e.
g. Alpine) are recommended as many images will be run concurrently.

Automate
d
configurati
on

Provide detailed information or scripts that can run in a non-GUI environment for automated configuration.

When contributing new workflows or implementation use cases, the following artefacts are expected to be produced to support this:

Workflow owner
responsibilities

Description

Test data Generate fake but realistic data for E2E tests and general functionality.

Package test data Make test data available or reproducible online.

Tests Write tests for the expected workflows supported using the containers, configuration, and fake data.

Dockerfile Tests can be written in any language. Provide a Docker container for tests so that they can be run easily (with environment
variables) against any stack (not just Instant OpenHIE)

Container image Make available a link to a public image of the tests. A tagged release image should be available.

Project Team

Digital Square

Jembi Health Systems

IntraHealth International

Engaging with Us

Please join us in the OpenHIE DevOps Community Call DevOps Subcommunity Calls

or, in the OpenHIE Architecture Community https://groups.google.com/forum/#!forum/ohie-architecture

https://www.digitalsquare.org
https://www.jembi.org
https://www.intrahealth.org/
#
https://groups.google.com/forum/#!forum/ohie-architecture

	Instant OpenHIE

