
CDA Import Module Prototype
The source code for this prototype module is currently located on GitHub within the feature_fw branch: https://github.com/jembi/openmrs-module-shr-

 . This module is in early stages and there are still issues with it, it is intended to be an experiment and requires further work before being put cdahandler.git
"in the field".

Overall Design

The design of the CDA Content Handler Module prototype is based on a series of “processors” which are instantiated based on the template id that the
structure currently in “scope” of processing. Processors implement the Processor interface which itself is specialized into document, section and entry
processor interfaces.

Each processor is responsible for interpreting/converting the HL7v3 CDA RMIM structure, and performing any updates the OpenMRS data store. A
processor is also responsible for validating that it can parse the structure provided to it (not only CDA conformance but conformance of the constructed
OpenMRS objects) and throwing a DocumentValidationException if this validation fails.

Processors are constructed using one of three processor factories:

Document Processor Factory
Section Processor Factory
Entry Processor Factory

Each processor factor calls the ClassPathScannerUtil to construct the most appropriate processor for the particular structure. The utility uses the
@ProcessTemplates annotation to determine which templateId a particular processor can handle. For example:

@ProcessTemplates(templateIds = { “x.x.x.x.x.x.x” })
public final class FooSectionProcessor implements SectionProcessor

Would indicate that any structure carrying “x.x.x.x.x.x” templateId should be processed by FooSectionProcessor. If a document/section/entry carries more
than one templateId then the most specific implementation (that which is furthest down the inheritance tree) is selected. For example, consider the
following processors:

@ProcessTemplates(templateIds = { “x.x.x.x.x.x.x” })
public class FooSectionProcessor implements SectionProcessor

@ProcessTemplates(templateIds = { “y.y.y.y.y.y.y” })
public final class BarSectionProcessor extends FooSectionProcessor

If a section has both OIDs (x.x.x.x.x.x and y.y.y.y.y.y) then BarSectionProcessor would be selected, even though FooSectionProcessor is able to process
at least some of the constraints. Additionally processors carrying the @ProcessTemplates annotation may support more than one template identifier by
adding additional OIDs to the templateIds annotation parameter.

All processors are responsible for cascading any values down the RMIM graph (for example: context conduction) and are responsible for calling
processors for any sub-sections, entries, components, etc.

Any processor may obtain the context within which it is being executed via its getContext() method. This method returns the context within which a
particular processor is being run, and does not represent the current node. For example, a SectionProcessor processing a section at the document level
would have a getContext() value of DocumentProcessorContext (i.e. the document is the context not the section). Same applies to entries where the
getContext() method would return the section which contains the entry.

Completed Document Processors

Antepartum History and Physical (APHP) - AntepartumHistoryAndPhysicalDocumentProcessor
Antepartum Summary (APS) - AntepartumSummaryDocumentProcessor
MedcalDocumentsDocumentProcessor
XDS Medical Summaries (XDS-MS) - MedicalSummariesDocumentProcessor
History and Physical (HP) - HistoryAndPhysicalDocumentProcessor
Generic Level 2 CDA - GenericDocumentProcessor

Completed Section Processors

All Level 2 Sections - GenericLevel2SectionProcessor , including
Chief Complaint
Assessment and Plan
Consultations
History of Surgical Procedures
Intake and Output
Pain Assessment Panel
Birth Plan
Discharge Status
Event Outcomes
Newborn Status at Maternal Discharge
History of Blood Transfusion
Review of Systems
Care Plan
Discharge Disposition

https://github.com/jembi/openmrs-module-shr-cdahandler.git
https://github.com/jembi/openmrs-module-shr-cdahandler.git

Discharge Diet
Advance Directives
History of Present Illness
Hospital Course
Review of Systems

Active Problems - ActiveProblemsSectionProcessor
History of Infection - CodedHistoryOfInfectionSectionProcessor (Coded and non-coded)
Pregnancy History - PregnancyHistorySectionProcessor
Detailed Physical Examination - DetailedPhysicalExaminationSectionProcessor (Coded and non-coded)
Allergies and Other Adverse Reactions - AllergiesAndOtherAdverseReactionsSectionProcessor
Family History - FamilyHistorySectionProcessor (Coded and non-coded)
Social History - SocialHistorySectionProcessor (Coded and non-coded)
Vital Signs - VitalSignsSectionProcessor (Coded and non-coded)
History of Past Illness - HistoryOfPastIllnessSectionProcessor (Coded and non-coded)
Physical Exam - PhysicalExaminationSubSectionProcessor (handles all physical exam sub-sections)
Antenatal Testing and Surveillance - AntenatalTestingAndSurveillanceSectionProcessor
Antepartum Visit Summary Flowsheet - AntepartumVisitSummaryFlowsheetSectionProcessor
Coded Results - CodedResultsSectionProcessor
Estimated Delivery Dates - EstimatedDeliveryDatesSectionProcessor
Medications - MedicationsSectionProcessor

Completed Entry Processors

Vital Signs - VitalSignsObservationEntryProcessor
Simple Observations - SimpleObservationEntryProcessor
Family History Organizer - FamilyHistoryOrganizerEntryProcessor
Concern Entry - ConcernEntryProcessor
Allergies and Intolerances Concern - AllergiesAndIntolerancesConcernEntryProcessor
Severity Observation - SeverityObservationEntryProcessor
Allergies and Intolerances Observation - AllergiesAndIntolerancesEntryProcessor
Problem Concern - ProblemConcernEntryProcessor
Family History Observation - FamilyHistoryObservationEntryProcessor
Vital Signs Organizer - VitalSignsOrganizerEntryProcessor
Pregnancy Observation - PregnancyObservationEntryProcessor
Pregnancy History Organizer - PregnancyHistoryOrganizerEntryProcessor
Antenatal Testing and Surveillance Battery - AntenatalTestingAndSurveillanceBatteryEntryProcessor
Estimated Delivery Date Observation - EstimatedDeliveryDateObservationEntryProcessor
External References - ExternalReferencesEntryProcessor
Medications - MedicationsEntryProcessor (Conditional and Split Dosing)

Tapered Dosing - TaperedDosingMedicationsEntryProcessor
Normal Dosing - NormalDosingMedicationsEntryProcessor

Procedures - ProceduresEntryProcessor

Concept Dictionary

The OpenMRS concept dictionary is used extensively by this module. Each concept that requires association to an observation, allergy, problem, etc. is
selected from a reference term within the code and concept source represented by the code/codeSystem attributes of a code in the CDA respectively.
Once an appropriate reference term is found the concepts that are mapped to that term are searched based on suitability to store the CDA data. The type
of concept used in OpenMRS’ concept dictionary and its mapping to the CDA datatype to be stored is shown below:

BL -> Boolean
CS/CV/CE/CD -> Coded
INT -> Numeric
PQ -> Numeric (units are also checked)
ST, II, TEL -> Text
ED / SD -> Complex
TS -> DateTime
CO -> Numeric if "value" is used, Coded if "code" is used
RTO, MO -> Text

If none of concept source, reference term, or concept are found then it is created and mapped accordingly. Where possible built in OpenMRS concepts are
used. Additionally, whenever a Numeric concept is found to represent a PQ where the units do not match, the module will check to see if the units are
convertible. For example, if an openMRS concept for Height is found however the PQ in the CDA is represented in m instead of cm the unit is converted to
cm before storage.

Because CDA uses a variety of codes from SNOMED, LOINC and others, there is a need to bulk-import concepts and their mapping to MVP/CIEL upon
module install. This is done via the ReferenceTermDictionary.xml file in the resources folder. Upon build, this XML file is transformed to a liquibase.xml file
and placed in the omod file. This file contains mapping to CIEL concepts where appropriate and allows the module to use those mappings in an easy to
maintain XML File (editable within Microsoft Excel as a table)

Orders

Many entries within the CDA document carry what are known as moodCodes. These mood codes identify the mode of the entry.

Entries carrying a mood code of EVN (event) represent something did occur (i.e. I did observe X)

1.
2.

a.
3.
4.

5.

Entries carrying a mood code of INT (intent) represent the intent to do what the entry represents (i.e. I intend to observe X, or I would like
someone to observe X)
Entries carrying a mood code of GOL (goal) mean the entry represents a desired end state such as in a care plan (i.e. The goal is to observe X by
Y date)
Entries carrying a mood code of PRP (proposal) mean the entry represents a proposal to perform something

Within the CDA import module, entries are imported into OpenMRS' data model depending on their mood code. Below is a table representing the source
CDA RMIM class by moodCode and the resulting structure in OpenMRS.

RMIM Class / Mood EVN INT GOL PRP

Observation Obs ObservationOrder Obs Group (having GOAL sub-obs) Obs Group (having PROPOSAL sub-obs)

Organizer Obs Group N/A N/A N/A

SubstanceAdministration Obs Group (160741) DrugOrder N/A N/A

Procedure Obs Group (160714) ProcedureOrder Obs Group (having GOAL sub-obs) Obs Group (having PROPOSAL sub-obs)

Act ActiveListItem (Allergy or Problem) N/A N/A N/A

Note: ProcedureOrder and ObservationOrder are extended orders having additional data placed in the procedure_order and observation_order tables in
OpenSHR's data model respectively. These classes were extended to qualify the type of order as well as track additional data required such as
targetSiteCode, procedure/observation requested, and goal ranges.

Known Issues / Todo

Most up-to date listed here: https://github.com/jembi/openmrs-module-shr-cdahandler/issues

Currently there is some header elements which cannot be mapped appropriately into OpenMRS
Currently many types of entries are missing INT mood code handling

This should create an Order in OpenMRS which has some caveats.
Family History observations are kind of hacked as the oMRS mechanism for storing these are similar to CDA but not identical.
Performance is poor, it appears to be in the code that double checks if a concept name already exists prior to creating it, I’m not sure if this is a
problem with the standalone instance of oMRS that I’m testing with or if it is an issue with the logic.
All observations are created within the oMRS database and are seen in the Observation management admin panel, however the encounter
summary panel does not show grouped obs in the UI.

https://github.com/jembi/openmrs-module-shr-cdahandler/issues

	CDA Import Module Prototype

