
1.
2.
3.
4.

1.

2.

3.

OpenHIE Entity Matching Service

Purpose

The purpose of the entity matching service is to enable matching in a single list of , patients health
, or other entities or to find potential matches between two lists of the same entities. workers facilities

How it Works

The service receives a FHIR message with the entity to be matched and returns zero to 10 matches and
their scores. We are supporting FHIR through Hapi FHIR.

The service can also be executed as a standalone program using flat data files. It can search for
duplicates within a single file, or it can search for matches between two files.

Potential Use Cases

We envision the following potential use cases:

Ensuring the the entity doesn't exist when entering a new instance of the entity
Duplicate checking during bulk imports.
Analysis of potential duplicates in an existing data set.
Mapping one data set of entities to their corresponding value in another data set.

Potential Implementations

Depending upon the use case, we envision that there might be a spectrum of implementation
options. We expect to learn from the first implementations and refine the use patterns based upon
experience. For now, we imagine the following types of architectural implementations:

Tight coupling - A tightly coupled implementation might be one where the matching service
software library is incorporated into the architecture component.
Medium - This type of implementation could be one where the service interacts directly with the
architecture component's data source.
Loose - This type of service may load data into the service's data base and analyze the data
from there.

FHIR Reference

http://gforge.hl7.org/gf/project/fhir/tracker/?action=TrackerItemEdit&tracker_item_id=9685&start=0

High Level Overview of Mapping Service Components

Sample URL:

https://testmap.ohie.org/registry/fhir/Location/$match

Sample Request:

<Parameters xmlns="http://hl7.org/fhir"> <parameter> <name value="location"
/> <resource> <Location xmlns="http://hl7.org/fhir"> <contained> <Location
xmlns="http://hl7.org/fhir"> <id value="1"/> <identifier> <value value="a.
bc.1.sample"/> </identifier> <name value="simple health"/> </Location> <
/contained> <identifier> <value value="117"/> </identifier> <name value="
simple clinic"/> <position> <longitude value="10"/> <latitude value="100"
/> </position> <partOf> <reference value="#1"/> </partOf> </Location> <
/resource> </parameter> <parameter> <name value="count"/> <valueInteger
value="5"/> </parameter> </Parameters>

Sample Response:

OHIE Architecture Quick Links

Architecture Subcommunity Call

Architecture Governance and
Principles

Architecture Review Board
Deliverables, Members, and
Responsibilities

Architecture Road Map

OpenHIE Entity Matching Service

Specification Management and
Workflow Processes

OpenHIE Standards and Profiles

http://gforge.hl7.org/gf/project/fhir/tracker/?action=TrackerItemEdit&tracker_item_id=9685&start=0
https://testmap.ohie.org/registry/fhir/Location/$match
https://wiki.ohie.org/display/DR/Architecture+Subcommunity+Call
#
#
https://wiki.ohie.org/display/DR/Architecture+Review+Board+Deliverables%2C+Members%2C+and+Responsibilities
https://wiki.ohie.org/display/DR/Architecture+Review+Board+Deliverables%2C+Members%2C+and+Responsibilities
https://wiki.ohie.org/display/DR/Architecture+Review+Board+Deliverables%2C+Members%2C+and+Responsibilities
https://wiki.ohie.org/pages/viewpage.action?pageId=21332440
#
#
#

1.

2.

3.

<Bundle xmlns="http://hl7.org/fhir"> <entry> <resource> <Location xmlns="
http://hl7.org/fhir"> <id value="1000010"/> <contained> <Location xmlns="
http://hl7.org/fhir"> <id value="con31"/> <identifier> <value value="A.BC.
1.SAMPLE"/> </identifier> <name value="SAMPLE HEALTH"/> </Location> <
/contained> <extension url="http://ohie.org/fhir/StructureDefinition/datim-
mechid"> <valueString value="1111"/> </extension> <identifier> <value
value="117"/> </identifier> <name value="SIMPLE CLINIC"/> <position>
<longitude value="10.0"/> <latitude value="100.0"/> </position> <partOf>
<reference value="#con31"/> </partOf> </Location> </resource> <search>
<score value="0.99762179871785583440413347489084117114543914794921875"/> <
/search> </entry> </Bundle>

Matching Engine Source Code:

https://tools.regenstrief.org/stash/users/amartin

/repos/registry/browse

Matching Approachs

There are multiple ways to determine a match.

Score - you can set the algorithm to provide a score. This approach can use thresholds. This
method is currently implemented in the service.
States (match, non-match, manual review) - this approach can use rules to establish rules for
matching. Some of the base capabilities in in place and Regenstrief is working to mature this
feature.
Score and States - Some services provide for mixing these states.

Potential Workflow - Find Possible Matches as an HIE Service

Example Actors:

Entity Authority -
OpenInfoMan/InterLinked Registry with the FHIR adapter

Entity Searcher
iHRIS - when a new health worker record is added
DHIS2 - when a new facility is added
OpenMRS - when a new client is added

This is one example of a possible workflow:

Interfaces

Different interfaces will need to be created to instantiate different use cases that call the service.

Matching Algorithms

While the entity matching service currently implements a sophisticated probabilistic algorithm, a key
overarching goal of the entity matching service is to accommodate a variety matching methods. The
current algorithm can be configured for matching different types of entities.

Configuration File

The matching service is highly configurable.

Page - Quick Links

Purpose
How it Works
Potential Use Cases
Potential Implementations
FHIR Reference
High Level Overview of
Mapping Service
Components

Sample URL:
Sample Request:
Sample Response:
Matching Engine
Source Code:
Matching
Approachs
Potential
Workflow - Find
Possible Matches
as an HIE Service
Interfaces
Matching
Algorithms
Configuration File
Importer
Data Structure
Example Workflow

Input - 2
source
files to
be
compared
(or a file
/Databas
e with
duplicates)
Configura
tion File
Run
Configura
tion
Output
File

Questions and Answers
Q: Is blocking
used?
Q: How is case
matching
supported?

https://tools.regenstrief.org/stash/users/amartin/repos/registry/browse
https://tools.regenstrief.org/stash/users/amartin/repos/registry/browse

1.

2.

Model configuration:
One will need to configure the service to understand the fields and data types that exist in the
database.
Mappings to FHIR fields can also be configured.
Matching configuration:
One can define matching rules using boolean logic for deterministic matching, or one can assign
weights for probabilistic matching.
Implementers can run RecMatch or another service to compute the configuration weights.

Importer

When configuring the matching service to run against an existing database, one will likely have existing
tools for loading data into the database. However, an importer is included with the matching
service. This can be helpful if one creates a new database to be used by the matching service. The
importer can take a flat file and import data into the database.

Data Structure

The matching service can run against a single flat table. It can also run against hierarchical
structures. For example, one might have a table named patient. If a patient can have multiple identifier
numbers from different domains, then there might be a separate child table named patient_identifier,
where each row contains the identifier value itself, the value's domain, and a reference to a patient
row. One can configure the matching service to understand both tables and the relationship between
them. Then values from both tables can be used for patient matching.

Example Workflow

Input - 2 source files to be compared (or a file/Database with duplicates)

The engine is capable of processing different file types (csv, tsv etc).We need two files we want to match
in the similar column structure.

Facility Name,Region,District,Council,Ward,Latitude,Longitude,Facility
Type,Pepfar/MOH
abcFacilityName, abcRegion, abcDistrict, abcCouncil, abcWard, abcLatitude,
abcLongitude, abcFacilityType, M/P

Configuration File

We need to create a configuration file where we depict the column structure, mention which algorithm to
use against each column we want to consider for comparison, mention if we want a score shown for
potential matches, mention above what score the matches can be shown, also if we want to ignore
values for comparison instead of considering them and penalizing the score.

Sample configuration

<registry>
 <properties>
 <property>
 <key>org.regenstrief.registry.score.MeanMetric.nullSkipped</key>
 <value>true</value>
 </property>
 </properties>
<tables>
<table>
 <name>FACILITY</name>
 <candidateMetric>
 mean(
 lcs("DISTRICT"),
 lcs("FACILITY_NAME"),
 lcs("REGION"),
 lcs("COUNCIL"),
 lcs("WARD"),
 euclidean("LATITUDE", "LONGITUDE", 0.1)
)
 </candidateMetric>

 <matchEvaluator>candidate(0.3)</matchEvaluator>
 <columns>
 <column>
 <index>0</index>
 <name>FACILITY_NAME</name>
 <type>Varchar</type>
 <size>100</size>
 </column>
 <column>
 <index>1</index>
 <name>REGION</name>
 <type>Varchar</type>
 <size>100</size>
 </column>
 <column>
 <index>2</index>
 <name>DISTRICT</name>
 <type>Varchar</type>
 <size>100</size>
 </column>
 <column>
 <index>3</index>
 <name>COUNCIL</name>
 <type>Varchar</type>
 <size>100</size>
 </column>
 <column>
 <index>4</index>
 <name>WARD</name>
 <type>Varchar</type>
 <size>100</size>
 </column>
 <column>
 <index>5</index>
 <name>LATITUDE</name>
 <type>Real</type>
 </column>
 <column>
 <index>6</index>
 <name>LONGITUDE</name>
 <type>Real</type>
 </column>
 <column>
 <index>7</index>
 <name>Facility type</name>
 <type>Varchar</type>
 <size>100</size>
 </column>
 <column>
 <index>8</index>
 <name>Pepfar/MOH</name>
 <type>Varchar</type>
 <size>100</size>
 </column>
 </columns>
</table>
</tables>
</registry>

Run Configuration

program variables

-file path/to/file1 -file2 /path/to/file2 -blocking.mode blockingModeToUse
-skip.header booleanValue -candidate.max
MaximumNumberOfPotentialValuesToBeShown -include.score booleanValue -delim
fileDelimiter(ifUsingAFileInput) -table TableType

VM Arguments

-Dorg.regenstrief.registry.configuration=path/to/configuration/file

Output File

 This file is generated at the same location as the source files with an suffix of Match. The file structure is
similar to the source file but, potential matches for a specific row are displayed below the row indented.

abcFacilityName, abcRegion, abcDistrict, abcCouncil, abcWard, abcLatitude,
abcLongitude, abcFacilityType, M
 abcFacilityName, abcRegion, abcDistrict,abcCouncil, abcWard,
xyzLatitude, xyzLongitude, xyzFacilityType, P, 0.8400000000000001

Questions and Answers

Q: Is blocking used?

A: The matching service is divided into two basic steps: coarse blocking and fine-grained matching
handled in Java. The blocking step is for performance, so that the service doesn't need to apply the fine-
grained matching algorithm to every row in the database. It’s less flexible than the fine-grained matching
step and is designed to allow fast queries based on typical database indexes. For example, an index on
the name column will make this query fast:

select * from organisationunit where name=?

But a normal database won’t be able to quickly run a query to search for rows based on a Levenshtein
score. The <blockingScheme> element defines how the matching service will handle this coarse
blocking.

Q: How is case matching supported?

The <caseMode> element can be used with these possible values:

CASE_SENSITIVE - it allows values to be stored as mixed case, and it uses query parameters
however they’re received.
QUERY_UPPER - it allows work with mixed case values in the database. It will also work
regardless of the case of incoming query parameters. When doing lookups, it will convert the
database values and the query parameters to upper case within the query itself, so queries will
be case insensitive: select … from organisationunit where upper(name)=upper(?) But if you
have a normal index on that column instead of a function-based index, then it won’t be able to
use the index.
QUERY_LOWER
STORE_UPPER - expects values to be stored as upper case in the database, and it converts
query parameters to upper case before doing lookups.
STORE_LOWER

	OpenHIE Entity Matching Service

