Using the OpenHIE and OpenHIM to implement the Health Normative Standards Framework: Experiences from Africa

Chris Seebregts
CEO Jembi Health Systems NPC - Hon Assoc Prof, Discipline of Computer Science, UKZN

Carl Fourie, Hannes Venter, Pierre Dane, Ryan Crichton, Wayne Naidoo, Jembi Health Systems NPC
Agenda

- The Health Normative Standards Framework, an extension to the South African National Health Act, developed by the National Department of Health

- Implementation of MomConnect, a project of the South African National Department of Health

- Other Data Exchanges in South Africa and lessons learned.
MomConnect

• Project of the South African National Department of Health, under the guidance of the Minister

• Operationalized through the mobile maternal health task team
THE HEALTH NORMATIVE STANDARDS FRAMEWORK - AN EXTENSION TO THE SOUTH AFRICAN NATIONAL HEALTH ACT - DEVELOPED BY THE NATIONAL DEPARTMENT OF HEALTH
HNSF Act

GOVERNMENT NOTICE

DEPARTMENT OF HEALTH

No. 314

23 April 2014

NATIONAL HEALTH ACT, 2003 (ACT NO. 61 OF 2003)

NOTICE IN TERMS OF THE NATIONAL HEALTH ACT NO 61 OF 2003: NATIONAL HEALTH NORMATIVE STANDARDS FRAMEWORK FOR INTEROPERABILITY IN EHEALTH

Development of the HNSF

- Commissioned by the National Department of Health (NDoH)
- Developed by the Meraka Institute of the Council for Scientific and Industrial Research (CSIR) in collaboration with the Nelson Mandela Metropolitan University (NMMU)
HNSF Some Highlights

- Patient-centric approach including a shared health record
- Maturity levels based on paper and electronic records
- Based on international standards, including base standards, profiles and interoperability specifications (IHE, ISO, HL7 etc)
- Adopt, adapt and develop (in that order) standards
- Interoperability architecture based on Health Information Exchange with demographic and clinical registries
- Requires a unique patient identifier and identification system
- Enterprise Architecture required to extend HNSF for a particular implementation
National Health Normative Standards Framework (HNSF)
Generic eHealth Architectural Components

HNSF - Local paper-based medical record system

HNSF - IHE profiles mapped to a fully integrated national shared electronic health record system

MOMCONNECT – A PROJECT OF THE SOUTH AFRICAN NATIONAL DEPARTMENT OF HEALTH
MomConnect

• Project of the South African National Department of Health, under the guidance of the Minister

• Operationalized through the mobile maternal health task team
MomConnect High Level Workflows

The workflows are designed to support the main aims of the MomConnect application which are to:

1. **Register pregnant women** attending antenatal care (ANC) facilities into a national pregnancy registry, and
2. **Subscribe** them to receive health promotion messaging during their pregnancy
3. Get **feedback** from the women about the **service received** in the ANC facilities in terms of **ratings and waiting periods**
4. Get **feedback** from women about the service received in the ANC facilities from their interactions with the **Helpdesk** in terms of **compliments, complaints and questions**
MomConnect

Partners:
- NDOH
- Jembi
- Praekelt Foundation
- CSIR
- HISP-SA
Architectural Design

- Architecture based on the HNSF integrated national shared electronic health record system
- Five layers:
 - Edge Devices, eg mobile phone
 - Consumer Applications, eg mHealth services
 - Health Information Exchange, eg OpenHIM
 - Demographic and Clinical Repositories, eg the National Pregnancy Registry
 - Security / Audit Services, eg certificate service
HNSF Maternal Health Standards and Profiles

MomConnect Standards and Profiles

HIE (OpenHIM)

Patient Identity Management
ITI-30 Patient Identity Feed
HL7v2 ADT

Mobile Application Service

HIE (OpenHIM)

Save Clinical Encounter
ITI-65 Put Document Dossier
CDA

Mobile Application Service
MomConnect Backend System

- Client Registry (MPI)
- Shared Health Record
- MomConnect Program (DHIS Patient Tracker)
- DHIS

- HIE (OpenHIM)
- Audit database

- Clinical Systems
- Mobile Application Service
General Workflow pattern

1. Send data [JSON]
2. Response (OK)

3. Send data

4. Response (OK)

2. Query patient identifier
3. Resolve patient identifier

4. Send data

5. Response (OK)

www.websequence diagrams.com
Results

Minister Aaron Motsoaledi: Health Dept Budget Vote 2015/16
5 May 2015

In August last year, we launched the MomConnect project at Motubatse clinic in Soshanguve, Tshwane Metro.

This project uses cellphone technology to register pregnant women – all pregnant women in both public and private health care. This empowers them to get all the information and instructions necessary for them to ensure a healthy pregnancy and deliver a healthy vibrant baby.

After delivery, the messages switch over to focus on information on the health needs of a new-born and will continue for up to one year after birth.

Honourable Speaker, I am very happy to announce that in a short space of only 8 months we have been able to register 383,354 pregnant women on the system. It is regarded as the largest number in the world. Before we started, Bangladesh was regarded as a world leader after registering 100,000 women in 18 months, while other countries are having only small pilot projects – nothing yet on a massive scale like we have.
Current Implementations of the OpenHIM
in RSA
DHIS2 Integration

- DHIS2 traditionally used for capture of routine, aggregate data
- Culture of switching of the server after hours, not transactional
- Poses a problem for a highly available transactional system
- Needed to build additional components to handle
Facility Cache

• DHIS2 used as the Facility Registry
• High load on this end point
• Use in-memory cache updated daily, with failsafe facility list written to disk
• This allows facility lookup even when DHIS2 is down
• Built a mediator to translate DHIS2 json response to CSD format
File Queue

- In order to cater for DHIS2 (or other registry) downtime, need for asynchronous queue
- Built a file based queue - writes CDA and json files to the file system (simple)
- Queue also smooths out spikes in traffic
- HTTP responses returned to HIM asynchronously to update transaction details
- Stores error-ed files in a separate folder for investigation
- Allows planned downtime (queue can accept files, but does not post them to DHIS2)